DE112009004636B4
Abstract
Die Erfindung betrifft ein Bremssystem, einen elektromotorischen Bremskraftverstärker aufweisend, bei dem der Hauptbremszylinder oder Tandem-Hauptbremszylinder (5) über einen Spindelantrieb (13) von einem Elektromotor (11, 12) angetrieben ist und im ABS-Betrieb zum Druckabbau mit diesem verbunden ist, wobei der oder die Arbeitsräume des Bremskraftverstärkers über Hydraulikleitungen (6, 7) mit den Radzylindern von Radbremsen (9a–9d) in Verbindung sind und jeweils einer Radbremse (9a–9d) ein steuerbares Ventil (8a, 8b, 8c, 8d) zugeordnet ist, und dass mittels einer Steuereinrichtung ein Druckaufbau und Druckabbau in den Radbremsen (9a–9d) mittels des Bremskraftverstärkers und der gesteuerten Ventile (8a–8d) gleichzeitig und/oder nacheinander erfolgt, wobei eine Bremsbetätigungseinrichtung (16, 16a, 14) im normalen Bremsbetrieb kraftunterstützend auf die Spindel (13) und/oder den Kolben (24) des Bremskraftverstärkers wirkt.
- {{ languageDisplay(language) }}
Beschreibung
[0001] Die vorliegende Erfindung betrifft ein Bremssystem mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Stand der Technik
[0002] Die Wirksamkeit der aktiven Sicherheitsfunktionen von ABS und insbesondere ESP ist so groß, dass es demnächst in den USA und der EU gesetzlich vorgeschrieben ist. Es werden große Anstrengungen unternommen, den Aufwand zu reduzieren. Nach dem Stand der Technik sind verschiedene Lösungen bekannt, die aufwandsreduzierend sind.
[0003] Eine erste Lösung besteht in der Integration von Druckregelung und Bremskraftverstärkung, wie es aus der DE 10 2005 018 649 A1 bekannt ist. Dieses System basiert auf einem Wegsimulator mit zusätzlichen Funktionen und Aktuatoren für den Fehlerfall bei Ausfall des Antriebes. Dies erfordert einen entsprechenden Aufwand.
[0004] Eine zweite Lösung besteht in der Reduzierung des Ventilaufwandes durch einen Multiplexbetrieb. Die DE 34 40 972 A1 beschreibt einen hydraulischen Bremskraftverstärker BKV, bei dem die Druckregelung mittels des THZ mit entsprechenden Ventilen im Multiplexbetrieb erfolgt. Dieses System erfüllt nicht die hohen dynamischen Anforderungen, so dass die Umschaltzeiten zu hoch sind.
[0005] Außerdem sind die Geräusche beim Umschalten der Ventile zu hoch. Dasselbe gilt bezüglich der Dynamik für ein pneumatisches System wie es aus der DE 38 43 159 A1 oder DE 39 08 062 A1 vorbekannt ist.
[0006] Die DE 10 2005 018 649 A1 beschreibt ein elektromotorisches Multiplexsystem mit hoher Dynamik als sogenannte Twin- und Tandemlösung mit Wegsimulator. Damit bei ABS-Betrieb keine Pedalrückwirkung erfolgt, ist ein Leerhub zwischen Pedal und Antriebseinrichtung vorgesehen. Nachteilig ist hierbei, dass bei Ausfall des Antriebes ein zusätzlicher Pedalweg notwendig ist.
[0007] Aus der FR 2 860 474 A1 ist ferner ein elektromotorischer Bremskraftverstärker bekannt, bei dem ein Elektromotor über eine Spindel eine Bremskraftunterstützungskraft einregelt. Das Bremspedal wirkt dabei über einen Pedalstößel auf den Kolben des Bremskraftverstärkers. Anhand der von dem Bremspedal auf den Kolben aufgebrachten Kraft wird mittels des Spindelantriebs die Kraftunterstützung mit dem Elektromotor eingeregelt. Die Kraftmessung zur Bestimmung der notwendigen Bremskraftunterstützung hat sich jedoch als nicht praktikabel herausgestellt.
[0008] Diverse Bremskraftverstärker sind aus der DE 10 2006 050 277 A1, DE 195 00 544 A1, DE 42 29 042 A1, US 5 758 930 A, EP 0 284 718 A2 und DE 43 27 206 A1 bekannt.
[0009] Die DE 10 2004 050 103 A1 beschreibt einen Bremskraftverstärker, bei dem ein Pedal über ein Gestänge und ein Federelement mechanisch auf die Kolben eines Tandem-Hauptbremszylinders einwirkt. Eine Steuerung eines angeordneten elektromotorischen Antriebs erfolgt basierend auf einem Kraftgeber und einem Drucksensor.
[0010] Die Konfiguration der DE 10 2004 050 103 A1 ist aufwändig. Weiterhin ist die erzielte Bremscharakteristik nicht optimal.
[0011] Aufgabe der vorliegenden Erfindung ist es, ein Bremssystem mit elektromotorischem Bremskraftverstärker derart weiter zu entwickeln, dass es ohne einen Wegsimulator auskommt und auch im Störungsfall, d. h. bei Ausfall des elektromotorischen Antriebs des Hauptbremszylinder-Kolbens (= HZKolbens) eine Bremskraftaufbau in den Radbremsen möglich ist.
[0012] Diese Aufgabe wird vorteilhaft mit einem Bremssystem mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des Bremssystems nach Anspruch 1 ergeben sich durch die Merkmale der Unteransprüche.
[0013] Auch bei Wegfall des Wegsimulators muss der Fahrer einen Gegendruck bei der Betätigung des Bremspedals erhalten. Dies geschieht erfindungsgemäß dadurch, dass das Bremspedal direkt über den Pedalstößel und evtl. über zusätzliche Übertragungsglieder auf das Kolbensystem des Bremskraftverstärkers wirkt. Über das Bremspedal wird somit eine Kraft auf das Kolbensystem ausgeübt, die im normalen Bremsbetrieb von dem Bremskraftverstärker verstärkt bzw. der Fahrer vom Bremskraftverstärker unterstützt wird.
[0014] Bei Verwendung einer, insbesondere starken, Feder zwischen Antrieb und Bremsbetätigungseinrichtung ist der Hub der Bremsbetätigungseinrichtung bzw. der Pedalhub größer als der Kolbenweg, welcher über den Motor mit Drehwinkelgeber erfasst wird. Diese Wegdifferenz kann zur Bremskraftsteuerung bzw. Verstärkung verwendet werden, wodurch sich eine erheblich einfachere Steuerung ergibt. Vorteilhaft werden die Sensortoleranzen, z. B. unterschiedliche Offset-Spannungen normiert, indem ein kleiner Leerhub zwischen Betätigungseinrichtung und Antrieb eingebaut ist und z. B. bei Spannungsänderung des Pedalhubgebers diese Position als Basis dient. Eine andere Möglichkeit besteht darin, dass bei Inbetriebnahme oder Service des Systems das Bremspedal betätigt wird, bis es die Spindel und da- DE 11 2009 004 636 B4 2017.08.03 3/15 mit den Rotor bewegt. Die Bewegung wird dabei mittels des Drehwinkelsensors gemessen. Bei dieser Position erfolgt dann ein Abgleich der Sensorspannungen bzw. entsprechender Digitalwerte.
[0015] Zur Druckregelung ist ein Druckgeber im Druckstangenkreis vorgesehen, der zusammen mit dem Kolbenweg zur Bestimmung der Druckvolumenkennlinie dient. Diese Kennlinie ist die Basis für die genaue Drucksteuerung. Zur weiteren Systemvereinfachung, insbesondere für ABS, kann auch der Motorstrom über einen Shunt erfasst werden, der proportional zum Motormoment und damit Druck ist. Diese Messung oder auch der Druck kann auch für die Plausibilitätsüberwachung der Sensorsignale dienen, so dass auf redundante Sensoren verzichtet werden kann.
[0016] Nachfolgend werden exemplarisch verschiedene mögliche Ausführungsformen des erfindungsgemäßen Bremssystems anhand von Zeichnungen näher erläutert.
[0017] Es zeigen:
[0018] Fig. 1: Zwei mögliche Ausführungsformen eines erfindungsgemäßen Bremssystems;
[0019] Fig. 2: dritte mögliche Ausführungsform eines erfindungsgemäßen Bremssystems;
[0020] Fig. 3: vierte mögliche Ausführungsform eines erfindungsgemäßen Bremssystems;
[0021] Fig. 3a: Querschnittsdarstellung durch den Schnitt x-x in Fig. 3;
[0022] Fig. 4: fünfte mögliche Ausführungsform eines erfindungsgemäßen Bremssystems mit Kupplung zur Entkopplung des HZ-Kolbens und der Bremsbetätigungseinrichtung für den unverstärkten Bremsdruckaufbau im Störungsfall; [0023] Fig. 4a: Detaildarstellung der Kupplung gem. Fig. 4;
[0024] Fig. 5: Bremsdruck P, Sensorspannung U, Kolbenweg sK und Pedalhub SP mit Federung;
[0025] Fig. 5a: Pedalkraft und Kolbenkraft über dem Pedalhub s;
[0026] Fig. 5b: Bremsdruck P, Sensorspannung U, Kolbenweg sK und Pedalhub SP mit Federung bei einem Bremskreisausfall;
[0027] Die Fig. 1 zeigt den grundsätzlichen Aufbau des erfindungsgemäßen Bremssystems bestehend aus HZ bzw. THZ 5, EC-Motor mit Stator 11 und Rotor 12, Spindel 13 zum Antrieb des Druckstangenkolbens 24 über den Stößel 21 und einem Drehwinkelgeber 4 zur Positionsbestimmung des Druckstangenkolbens 24 und der Erfassung der Rotorposition bzw. des Kolbenweges.
[0028] Erhält der Kolben 24 den Stellbefehl zum Aufbau eines bestimmten Druckes, so erfolgt über die vorher über Kolbenweg und Druckvermessung aufgenommene und in einem Kennfeld gespeicherte Druckvolumenkennlinie die entsprechende Kolbenbewegung über den Drehwinkelgeber 4 mit entsprechendem Druck in den Bremskreisen. Bei vereinfachten Systemen, z. B. ABS, kann auch ein für die Motorsteuerung ohnehin notwendiger Shunt 26 zur Strommessung der Ansteuerung 25 verwendet. Bei anschließendem kurzem konstanten Druck, was meistens bei einer Bremsung der Fall ist, erfolgt der Korrelationsvergleich aufgrund neuer Messdaten mit den abgelegten Kennfelddaten. Bei einer Abweichung wird bei späterem Fahrzeugstillstand nochmals einzeln die Druckvolumenkennlinie für jede Radbremse aufgenommen und das Kennfeld korrigiert. Ist die Abweichung nennenswert, z. B. an einem Radzylinder, so erfolgt der Hinweis, die Werkstatt aufzusuchen.
[0029] Der im HZ bzw. THZ erzeugte Druck gelangt über die Leitungen 6 und 7 von Druckstangenkolben und Schwimmkolben über die 2/2 Magnetventile 8a bis 8d zu den Radzylindern 9a bis 9d. Hierbei ist die Dimensionierung der Strömungswiderstände für das Multiplexverfahren in den Leitungen und Ventilen von großer Bedeutung. Zudem ist die Abstimmung der Schalt- und Umschaltzeiten entscheidend. Dies ist detailliert in weiteren Anmeldungen des Anmelders beschrieben und im Einzelnen nicht Gegenstand dieser Erfindung.
[0030] Bei Betätigung des Bremspedals 16 wirkt dieses über den Pedalstößel 16a auf die Betätigungseinrichtung 14 und diese auf die Spindel 13. In der unteren Bildhälfte ist ein Leerhub Δs eingezeichnet. Bei Nichtbetätigung des Bremspedals 16 hebt die Feder 17 die Übertragungseinrichtung 14 um den Leerhub Δs von der Spindel 13 ab. Der Leerhub Δs muss bei jeder Bremsung überwunden werden, bis der Bund der Übertragungseinrichtung 14 auf die Spindel 13 trifft. Bei dieser Lösung wirkt der Antrieb (Spindel) über die Übertragungseinrichtung 14 direkt auf das Bremspedal 16, was bei der Druckreduzierung bei ABS und entsprechender schneller Kolbenbewegung durch den Stoß störend wirken kann. Die Bremskraftverstärkung erfolgt hier über einen nicht eingezeichneten Kraftsensor wie er in der DE 10 2004 050 103 A1 beschrieben ist. Die Rückstellfeder 17 zwischen Spindel 13 und Übertragungseinrichtung 14 drückt diese auf einen Anschlag im Gehäuse 15.
[0031] Eine erhebliche Minderung des Stoßes wird durch eine Lösung erzielt, wie sie in der oberen Bild- DE 11 2009 004 636 B4 2017.08.03 4/15 hälfte dargestellt ist. Hier wirkt eine starke Druckfeder 20 über eine Scheibe 18 auf die Spindel 13. Aus Montagegründen ist diese Scheibe 18 über einen Sicherungsring 19 fixiert. Die Feder 20 ist linear oder degressiv für eine Pedalkraft oder Stangenkraft bei BKV-Funktion für einen Maximaldruck von z. B. 200 bar ausgelegt und weist einen Federhub von 4–6 mm auf. Die Feder 20 wird proportional zur Stangenkraft ausgelegt und überträgt diese Kraft auf die Spindel 13, auf die außerdem entsprechend der gewählten BKV-Verstärkung die Verstellkraft des Motors 11, 12 wirkt. Beide Kräfte ergeben zusammen die Kraft, die auf den Kolben wirkt. Erfolgt bei Druckabsenkung für die ABS-Regelung eine schnelle Kolbenrückstellung, so wirkt diese über die Feder 20 gedämpft auf das Pedal. Eine 10 bar Druckabsenkung im Regelzyklus entspricht bei einem Mittelklassefahrzeug ca. 0,5 mm ≈ 10% des Federweges.
[0032] Damit ist der Pedalhub entsprechend diesem Hub größer als der Kolbenweg. Die Feder 20 kann auch für eine entsprechende Pedalcharakteristik leicht vorgespannt sein. Diese kann zur Bremskraftverstärkung unterschiedliche Hübe verwenden, indem der Druck proportional zum Differenzweg ist. Dieser Weg wird aus den Signalen von Pedalhubsensor 22 und Kolbenweg gewonnen. Der Kolbenweg kann dabei über den Drehwinkelsensor 4 ermittelt werden. Die Bremsdrucksteuerung erfolgt über den Kolbenweg auf Basis der Druckvolumenkennlinie. Die Bremsbetätigungseinrichtung 16, 16a, 14 ist permanent während der Bremsung über die Feder 20 mit dem Antrieb in Kontakt. Entsprechend der gewünschten Verstärkung wird vom Motor über die Spindel 13 die entsprechende Kraft auf den Kolben 24 übertragen, so dass Pedalkraft und Verstärkerkraft die dem Druck proportionale Kolbenkraft ergibt. Die Spindelkraft wird über einen beweglich gelagerten Stößel 21 auf den Druckstangenkolben 24 übertragen. Dabei ist der Stößel 21 sowohl an den Druckstangenkolben 24 als auch an die Spindel 13 gekoppelt, damit hohe Druckgradienten auch bei kleinen Drücken realisiert werden können. Der Stößel hat die Aufgabe, den möglichen Versatz der Spindel 13 und Schlag des Kugelgewindegetriebes nicht auf den Druckstangenkolben 24 zu übertragen. Die Spindel-Momentenabstützung 27 läuft in einer Nut des Gehäuses, vorzugsweise mit guten Gleiteigenschaften, entsprechend dem Kolbenweg. Die Momentenabstützung wird dabei zugleich als Anschlag genützt, da die THZ-Rückstellfedern auf die Spindel 13 wirken und neben der Kolbenrückstellung noch die Aufgabe der Motorrückstellung haben.
[0033] Die Kolben- oder Antriebsrückstellung erfolgt über den Motor. Um bei einer fehlerhaften Rückstellung und einem harten Anschlag eine zusätzliche Belastung des Kugelgewindetriebes zu reduzieren, ist eine Tellerfeder 23 zwischen der Momentenabstützung 27 und dem Kugelgewindetrieb 28 vorgesehen. Üblicherweise ist die Betätigungseinrichtung gegen Eindringen von Schmutz durch einen elastischen Balg 29 geschützt.
[0034] Die Fig. 2 zeigt eine dritte und vierte mögliche Ausführungsform des erfindungsgemäßen Bremssystems. Zwischen dem Kolben 24 und Spindel 13 besteht eine starre Kopplung, indem der Stößel 21 beidseitig als Kugelgelenk ausgebildet ist. Auf der rechten Seite der Spindel wird hier ein entsprechendes Einsatzstück 30 eingeschraubt.
[0035] Auf der Seite der Bremsbetätigungseinrichtung 16, 16a, 14 ist die Feder 20 in einer entsprechenden Ausbildung der Pedalübertragungseinrichtung 14 eingelagert, deren Führungssteg 14a den Pedalweggeber 22 betätigt. Die Feder 20 wirkt auf einen Bund 31a eines Lagerteils 31 mit innen liegender Rückstellfeder 17. Dieses Lagerteil ist zusätzlich in einer Bohrung geführt.
[0036] Die Übertragungseinrichtung 14 ist zusätzlich als Kolben ausgebildet, der im Gehäuse 15 gelagert und abgedichtet ist. Der Kolbenraum ist über ein Magnetventil 33 und 33a mit dem Vorratsbehälter verbunden. Das Ventil dient zur Pedalwegblockierung mittels der Übertragungseinrichtung 14. Erfolgt eine HZ-Kolbenrückstellung zum Druckabbau, so wirkt diese auf die Feder 20 und nicht auf das Pedal 16, da bei gesperrtem Magnetventil 33, 33a nur eine Bewegung innerhalb der Flüssigkeitskomprimierung erfolgen kann. Der Rücklauf von der Kolbenkammer wird hierfür über das Magnetventil 33 geschlossen. Wenn der Kolbenweg, z. B. bei einem Sprung im Reibbeiwert, größer ist als der Federweg, werden über entsprechende Auswertung des Differenzwegs zwischen Kolbenweg und Pedalweg die Magnetventile 33, 33a geöffnet. In der unteren Bildhälfte wird die Pedalvorwärtsbewegung zum selben Zweck blockiert, indem der Pedalweg nicht mehr erhöht werden kann.
[0037] Die Fig. 3 zeigt eine vierte mögliche Ausführungsform des erfindungsgemäßen Bremssystems. Die Fig. 3a zeigt eine Querschnittsdarstellung entsprechend dem Schnitt x-x gem. Fig. 3. Bei dieser Ausführungsform ist eine elektromechanische Pedalblockierung realisiert. Die Übertragungseinrichtung 14 ist über Stege 14a im Gehäuse 15a (s. Fig. 3a) gelagert. In dem Gehäuse 15a ist vertikal schwimmend ein Magnetjoch 34 mit Rückschluss 36 gelagert. Der Magnetfluss, der durch Spule 35 erzeugt wird, durchflutet Joch 34, Rückschluss 36 und Stege 14a und erzeugt eine Reibkraft zur Pedalblockierung in beiden Richtungen. Zur Verstärkung der Reibkraft können in bekannter Technik magnetisch leitende Lamellen eingesetzt werden. Durch variablen Strom kann die Pedalblockierkraft variiert werden. Auch ist es möglich, eine kleine Pedalrückwirkung zu erzeugen, indem erst nach einem bestimmten Kolbenweg die DE 11 2009 004 636 B4 2017.08.03 5/15 elektromagnetische Pedalblockierung eingeschaltet wird. Dieses Blockieren wird wieder abgeschaltet, wenn der Kolben wieder in die Ausgangslage vor der Druckabsenkung zurück gestellt wurde. In der oberen Bildhälfte ist dargestellt wie durch mehrere Federn (20, 20b) sowie eine Federscheibe 20a eine progressive Federkennlinie gestaltet werden kann.
[0038] Die Fig. 4 zeigt eine weitere Ausgestaltung des Bremssystems gem. der Fig. 2 und Fig. 3 ohne die Pedalblockierung mit dem Ziel, auch bei blockiertem Antrieb einen Druck erzeugen zu können. Dies wird dadurch ermöglicht, indem die Übertragungseinrichtung 14 die Pedalkraft auf den Stößel 21 überträgt und bei wirkender Bremskraftverstärkung zusätzlich die Spindelkräfte über das Mitnehmerelement 41 auf den HZ-Kolben 24 wirkt. Bei Ausfall der Bremskraftverstärkung wirkt dagegen nur die Pedalkraft.
[0039] Erfolgt nun für die Druckreduzierung für ABS eine Kolbenrückstellung, so wird der Hubmagnet 39 aktiv und bewegt den Kupplungselement 40 vor den Stößelbund 21a. Damit wird die Spindelkraft auf den Stößel 21 übertragen und wirkt gegen die Übertragungseinrichtung 14 und ermöglicht somit einen Druckabbau im entsprechenden Bremskreis. Bei dieser Ausgestaltung ist der Hubmagnet 39 mit der Spindel 13 beweglich gelagert und erfordert einen flexiblen Anschluss 39a.
[0040] Es ist sinnvoll, wenn die Kupplung nur dann wirksam ist, wenn zuvor zum Druckaufbau die Motorfunktion intakt ist. Damit wird verhindert, dass bei blockiertem Antrieb während des Druckaufbaus im Extremfall ein ABS-Signal generiert wird und anschließend trotz blockiertem Antrieb die Kupplung eingeschaltet wird, was dann zu einer Blockierung der Betätigungseinrichtung führen würde.
[0041] Die Spindel 13 und die Übertragungseinrichtung 14 haben infolge von Toleranzen einen radialen Versatz und Spindelschlag. Damit bei der Krafteinwirkung der Übertragungseinrichtung 14 auf den Stößel 21 keine Belastung an der Spindel 13 auftritt, sollte der mit der Übertragungseinrichtung 14 verbundene Stößel 31b entweder biegelastisch ausgebildet sein, wie es in der oberen Bildhälfte dargestellt ist oder gelenkig 31c, insbesondere mittels Kugelgelenk, mit der Übertragungseinrichtung 14 verbunden sein (untere Bildhälfte).
[0042] Die Fig. 4a zeigt eine alternative Ausgestaltung, bei der der Hubmagnet mit Spule 44 am Gehäuse 15 befestigt ist. Der Anker 45 ist mit dem Kupplungselement 40 in einem Gleitlager 47 gelagert und wird über eine Rückstellfeder 46 in der Ausgangslage gehalten. Der Anker 45 mit Lagerbolzen 45a ist mit einer Führungsschiene 43 verbunden, in der das Kupplungselement 40 mit Bund axial mit der Kolbenbewegung mit gleitet. Wird der Hubmagnet 44 aktiviert, so drückt die Führungsschiene 43 das Kupplungselement 40 vor eine Hülse 42, die mit dem Stößel 21 in Kontakt ist. Dies hat den Vorteil, dass die halbkugelige Ausbildung weniger stark belastet wird, da die Hülse 42 hier die Spannung reduziert. Die Hülse 42 muss über einen Fixierring oder Feder 48 axial fixiert werden, da diese bei Ausfall BKV entsprechend dem Pedalhub in der Spindelbohrung bewegt wird. Hülse 42 und Kupplungselement 40 können kegelförmig ausgebildet sein. Damit sind auch bei extrem seltenem Ausfall des Antriebes während der ABS-Regelung bei Abschalten des Magneten 44 die Entriegelungskräfte kleiner.
[0043] Die Fig. 5 zeigt den Bremsdruck p, Sensorspannung U, Kolbenweg sK und Pedalhub SP mit Federung. Entsprechend der gegenkraftabhängigen Auslenkung entsteht ein Differenzweg Δh, der bei kleinem Pedalhub zu einem Druck p1 und bei maximaler Auslenkung mit Δhmax zu einem Druck p2 führt. Diese Funktion kann mit entsprechender Feder linear oder degressiv gestaltet werden.
[0044] Elektromotorische Bremskraftverstärker entsprechend dem vorgenannten Stand der Technik, besitzen redundante Sensoren für Drehwinkel des Motors oder Kolbenweg sK und Pedalhub sP , da insbesondere bei Wegsimulatorsystemen die Sensoren sicherheitskritisch sind, da u. a. Pedalhub und Kolbenweg ungleich sind. Bei dem erfindungsgemäßen System kann durch einen Plausibilitätsvergleich der Aufwand für die sonst übliche Redundanz reduziert bzw. darauf verzichtet werden. So entsteht z. B. bei Ausfall des Gebers zur Bestimmung des Pedalhubs sP kein Differenzweg Δh, wodurch keine BKV-Wirkung eingeregelt wird. Das Pedal wirkt jedoch auf den Kolben wie beim Ausfall des BKV. Aus dem Kolbenweg sK - Wert wird durch den Plausibilitätsvergleich der Fehler erkannt. Ähnliches gilt für sK . Bei Ausfall der ΔhRechnung hilft ein Vergleich des Pedalhub sP mit dem gemessenen Druck oder Strom.
[0045] Die Spannungen der Sensoren müssen wegen unterschiedlicher Ausgangspannung auf einen Bezugspunkt normiert oder abgeglichen werden. Es wird vorgeschlagen, einen Abgleich der Spannungen in der Ausgangslage unter Berücksichtigung eines Korrekturwertes, welcher z. B. der Leerweg Δs sein kann. Dieser ist gerätespezifisch und kann bei der Inbetriebnahme des Fahrzeugs in der Produktion oder im Service ermittelt werden. [0046] Die Fig. 5a zeigt die Pedalkraft Fp und Kolbenkraft FK über dem Pedalhub s. Bei s1 ist die Pedalkraft Fp1 und die Kolbenkraft FK1. Die BKV-Verstärkung K ergibt sich bei s1 zu DE 11 2009 004 636 B4 2017.08.03 6/15 Bei smax ergibt sich FPmax und FKmax. Bei linearer Feder kann die Verstärkung K linear sein, wenn Δh proportional zum, Druck bzw. der Kolbenkraft ist.
[0047] Die Fig. 5b zeigt einen Bremskreisausfall. Hier entsteht bis SA kein Bremsdruck, da der aufgefallene Bremskreis einen Pedaldurchfall bis SA zur Folge hat. Danach wirkt die Kolbengegenkraft und es entsteht wiederum ein Δh zur BKV-Funktion, wie in Fig. 5 beschrieben. Hier kann z. B. die Verstärkung erhöht werden, da bei gleichem Druck entsprechend dem Ausfall der Bremsen in der Summe eine kleinere Bremskraft entsteht.
[0048] Bei Hybridfahrzeugen kann ebenfalls eine variable Verstärkung, insbesondere eine niedrigere Verstärkung, eingesetzt werden, um die zusätzliche Bremswirkung des Generators bei Rekuperation auszugleichen.
[0049] Es folgen weitere Ausführungsbeispiele der Erfindung:
Ausführungsbeispiel 1:
[0050] Bremssystem, einen elektromotorischen Bremskraftverstärker aufweisend, bei dem der Hauptbremszylinder oder Tandem-Hauptbremszylinder 5 über einen Spindelantrieb 13 von einem Elektromotor 11, 12 angetrieben ist und im ABS-Betrieb zum Druckabbau mit diesem verbunden ist, wobei der oder die Arbeitsräume des Bremskraftverstärkers über Hydraulikleitungen 6, 7 mit den Radzylindern von Radbremsen 9a–9d in Verbindung sind und jeweils einer Radbremse 9a–9d ein steuerbares Ventil 8a, 8b, 8c, 8d zugeordnet ist, und dass mittels einer Steuereinrichtung ein Druckaufbau und Druckabbau in den Radbremsen 9a–9d mittels des Bremskraftverstärkers und der gesteuerten Ventile 8a–8d gleichzeitig und/oder nacheinander erfolgt, wobei eine Bremsbetätigungseinrichtung 16, 16a, 14 im normalen Bremsbetrieb kraftunterstützend auf die Spindel 13 und/oder den Kolben 24 des Bremskraftverstärkers wirkt.
Ausführungsbeispiel 2:
[0051] Bremssystem nach Ausführungsbeispiel 1, wobei dass im ABS-Betrieb die Spindel 13 oder der Kolben 24 die Bremsbetätigungseinrichtung 16, 16a, 14 kraftbeaufschlagt und/oder verstellt.
Ausführungsbeispiel 3:
[0052] Bremssystem nach Ausführungsbeispiel 1 oder 2, wobei die Betätigungseinrichtung 16, 16a, 14 über mindestens ein Federelement 20, 20b, insbesondere eine Druckfeder, auf die Spindel 13 und/oder den Kolben 24 des Bremskraftverstärkers wirkt.
Ausführungsbeispiel 4:
[0053] Bremssystem nach einem der Ausführungsbeispiele 1 bis 3, wobei das Federelement 20 sich mit seinem einen Ende an einer Übertragungseinrichtung 14 oder dem Pedalstößel 16a und mit seinem anderen Ende an der Spindel 13, dem Kolben 24 oder der Kolbenstange 21 abstützt.
Ausführungsbeispiel 5:
[0054] Bremssystem nach Ausführungsbeispiel 3 oder 4, wobei das mindestens eine Federelement 20 eine lineare oder degressive Kraft-Weg-Kennlinie für den oberen Kraftbereich aufweist.
Ausführungsbeispiel 6:
[0055] Bremssystem nach einem der Ausführungsbeispiele 3 bis 5, wobei die Federweglänge für maximalen Bremsdruck mindestens 1 mm, vorzugsweise mindestens 4 mm beträgt.
Ausführungsbeispiel 7:
[0056] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei die Bremsbetätigungseinrichtung ein Bremspedal 16 aufweist, welches mit einem Pedalstößel 16a in Verbindung ist, wobei der Pedalstößel 16a mit einer Übertragungseinrichtung 14 verbunden ist und die Übertragungseinrichtung 14 auf die Spindel 13 und/oder den Kolben 24 des Bremskraftverstärkers wirkt.
Ausführungsbeispiel 8:
[0057] Bremssystem nach Ausführungsbeispiel 7, wobei das mindestens eine Federelement 20 in oder an der Übertragungseinrichtung 14 angeordnet ist.
Ausführungsbeispiel 9:
[0058] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei ein zusätzliches Rückstellfederelement 17 die Übertragungseinrichtung 14 oder den Pedalstößel 16a vom Kolben 24 oder der Spindel 13 abhebt.
Ausführungsbeispiel 10:
[0059] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei der Kolben 24 und die Spindel 13 ständig oder wahlweise, insbesondere mittels einer schaltbaren Kupplung 40–46, verbunden oder wahlweise miteinander verbindbar bzw. entkuppelbar sind. DE 11 2009 004 636 B4 2017.08.03 7/15
Ausführungsbeispiel 11:
[0060] Bremssystem nach Ausführungsbeispiel 10, wobei der Kolben 24 und die Spindel 13 wahlweise mittels Form- oder Kraftschluss miteinander verbindbar sind.
Ausführungsbeispiel 12:
[0061] Bremssystem nach Ausführungsbeispiel 10, wobei der Kolben 24 und die Spindel 13 mittels eines Kraftübertragungsmittels, insbesondere in Form eines Stößels 21, welcher als Biegestab ausgebildet sein kann, miteinander verbunden sind oder verbindbar sind.
Ausführungsbeispiel 13:
[0062] Bremssystem nach einem der Ausführungsbeispiele 10 bis 12, wobei das Kraftübertragungsmittel 21 durch die hohle Spindel 13 hindurch mit der Bremsbetätigungseinrichtung 16, 16a, 14 in Verbindung ist, wobei an der Spindel 13 ein Mitnehmerelement 41 angeordnet ist, mittels dem das Kraftübertragungsmittel 21 zum Druckaufbau mit der Spindel 13 verstellbar ist, und dass in Richtung des Druckabbaus wahlweise mittels der Kupplung 40–46 ein Formschluss oder Kraftschluss zwischen dem Kraftübertragungsmittel 21 und der Spindel 13 herstellbar ist.
Ausführungsbeispiel 14:
[0063] Bremssystem nach Ausführungsbeispiel 13, wobei bei erfolgter Einkupplung der Kupplung 40–46 der Formschluss zur Verstellung des Kraftübertragungsmittels 21 zum Druckabbau bzw. zum Zurückziehen des Kolbens 24 durch ein Kupplungselement 40, welches insbesondere als Anschlag für das Kraftübertragungsmößel 21 dient, erfolgt, wobei sich das Kupplungselement 40 durch die zylindrische Wandung der Spindel 13 hindurch erstreckt.
Ausführungsbeispiel 15:
[0064] Bremssystem nach einem der Ausführungsbeispiele 10 bis 14, wobei die Kupplung 40–46 einen gehäusefest gelagerten, Antrieb 44, 46, 47 aufweist, der das Kupplungselement 40 verstellt, wobei das Kupplungselement 40 relativ zum Antrieb 44 parallel zur Spindelachse verschiebbar gelagert ist.
Ausführungsbeispiel 16:
[0065] Bremssystem nach einem der Ausführungsbeispiele 10 bis 15, wobei die Kupplung 40–46 einen Antrieb 44, 46, 47 zur Verstellung des Kupplungselementes 40 aufweist, wobei der Antrieb an der Spindel 13 befestigt ist.
Ausführungsbeispiel 17:
[0066] Bremssystem nach einem der Ausführungsbeispiele 10 bis 16, wobei sich das Kupplungselement 40 durch die zylindrische Wandung des Spindel 13 hindurch erstreckt.
Ausführungsbeispiel 18:
[0067] Bremssystem nach einem der Ausführungsbeispiele 10 bis 17, wobei das Kupplungselement 40 von einem Federelement 46 in Richtung der ausgekuppelten Stellung kraftbeaufschlagt ist.
Ausführungsbeispiel 19:
[0068] Bremssystem nach einem der Ausführungsbeispiele 10 bis 18, wobei die Steuereinrichtung die Kupplung 40–46 nur dann schließt, wenn zuvor die Motorfunktion des Antriebs 11, 12 für in Ordnung befunden wurde.
Ausführungsbeispiel 20:
[0069] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei das Bremssystem eine Arretiereinrichtung aufweist, mittels derer die Bewegung der Bremsbetätigungseinrichtung blockierbar ist.
Ausführungsbeispiel 21:
[0070] Bremssystem nach Ausführungsbeispiel 20 wobei die Arretierungseinrichtung die Bremsbetätigungseinrichtung in beliebigen Stellungen oder in einem bestimmten Bewegungsbereich blockieren kann.
Ausführungsbeispiel 22:
[0071] Bremssystem nach Ausführungsbeispiel 20 oder 21, wobei die Arretierungseinrichtung hydraulisch oder elektrisch, insbesondere mittels Elektromotor oder Elektromagnet angetrieben ist und auf die Betätigungseinrichtung, insbesondere die Übertragungseinrichtung 14 wirkt.
Ausführungsbeispiel 23:
[0072] Bremssystem nach einem der Ausführungsbeispiel 18 bis 20, wobei eine Steuereinrichtung die Arretierungseinrichtung in Abhängigkeit der Signale vom ABS/ESP-Regler und der Kolben und Betätigungseinrichtungspositionen ansteuert.
Ausführungsbeispiel 24:
[0073] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei das Bremssystem Sensoren zur Bestimmung der Kolbenposition sowie DE 11 2009 004 636 B4 2017.08.03 8/15 der Position der Bremsbetätigungseinrichtung aufweist, und die Steuereinrichtung des Bremssystems den Antrieb des Bremskraftverstärkers in Abhängigkeit der beiden Positionen zueinander den Antrieb des Bremskraftverstärkers ansteuert.
Ausführungsbeispiel 25:
[0074] Bremssystem nach Ausführungsbeispiel 24, wobei die Steuereinrichtung aus den ermittelten Positionen von Kolben 13 und Bremsbetätigungseinrichtung 16, 16a, 14 die Pedalkraft ermittelt und anhand des zur Pedalkraft proportionalen Differenzhubes Δh den Antrieb 11, 12 des Bremskraftverstärkers ansteuert.
Ausführungsbeispiel 26:
[0075] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei das Bremssystem einen Drucksensor 10 aufweist, mit dem der Druck in Druckkolbenkreis ermittelbar ist, wobei die Druckregelung für die Radbremsen 9a–9d auf Basis der Druckvolumenkennlinien erfolgt.
Ausführungsbeispiel 27:
[0076] Bremssystem nach einem der Ausführungsbeispiele 1 bis 25, wobei mittels der Stromaufnahme des elektrischen Antriebs des Bremskraftverstärkers, insbesondere mittels eines Shunts 26 die zum Druck proportionale Stromstärke gemessen wird und die Druckregelung für die Radbremsen 9a, 9b, 9c, 9d auf Basis der Druckvolumenkennlinien und der Stromstärke, insbesondere ohne Verwendung eines Drucksensors, erfolgt.
Ausführungsbeispiel 28:
[0077] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei die Steuereinrichtung für die Zustandsgrößen „Bremsbetätigungseinrichtung, insbesondere Pedalhub sp , und Kolbenstellung sK eine Plausibilitätsprüfung durchführt.
Ausführungsbeispiel 29:
[0078] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei die Steuereinrichtung eine Normierung und Abgleich der Sensorsignale, insbesondere für die Druck-, Positions- und/oder Drehwinkelgeber, durchführt, wobei der Abgleich in der Ausgangslage von Bremspedal 16, Spindel 13 und Kolben 24 unter Berücksichtigung der zuvor ermittelten realen Entfernung Δs als Korrekturwert, erfolgt.
Ausführungsbeispiel 30:
[0079] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei die Steuereinrichtung den Federweg der Feder 20 als Steuergröße für die Einregelung der Bremskraftverstärkung verwendet.
Ausführungsbeispiel 31:
[0080] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei die Rückstellfedern des HZ- bzw. THZ den Kolben 24 sowie die Spindel 13 in deren Ausgangsstellung verstellen.
Ausführungsbeispiel 32:
[0081] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei eine Feder 3 die Spindel 13 in Richtung ihrer Ausgangsstellung und die HZ- bzw. THZ-Federn den Kolben 24 in seine Ausgangsstellung kraftbeaufschlagen bzw. verstellen.
Ausführungsbeispiel 33:
[0082] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele, wobei das an der Übertragungseinrichtung 14 oder dem Kolbensystem 24, 21, 30 ein Lagerteil 31 parallel zur Spindelachse verschieblich gelagert ist, wobei das Lagerteil 31 einen biegeelastischen Stößel 31b zur Kraftübertragung, auf das Kolbensystem bzw. die Übertragungseinrichtung 14 aufweist.
Ausführungsbeispiel 34:
[0083] Bremssystem nach Ausführungsbeispiel 33, wobei der Stößel 31c mittels Kugelgelenk an dem Lagerteil 31 angelenkt ist.
Ausführungsbeispiel 35:
[0084] Bremssystem nach einem der vorhergehenden Ausführungsbeispiele wobei die Steuereinrichtung die Bremskraftverstärkung in Abhängigkeit der mittels Rekuperation erzielten Bremswirkung einregelt.
Bezugszeichenliste
- 1 EC-Motor
- 2 Spindel
- 3 Spindelrückstellung
- 4 Drehwinkelgeber (Positionsgeber)
- 5 HZ bzw. THZ
- 6 Druckleitung vom Druckstangenkolben
- 7 Druckleitung vom Schwimmkolben
- 8a–8d 2/2 Magnetventile als Schaltventile DE 11 2009 004 636 B4 2017.08.03 9/15
- 9a–9d Radzylinder
- 10 Druckgeber
- 11 Stator
- 12 Rotor
- 13 Spindel
- 14 Übertragungseinrichtung
- 14a Führungssteg
- 15 Gehäuse
- 15a Gehäuselager für Übertragungseinrichtung
- 16 Bremspedal
- 16a Pedalstößel
- 17 Rückstellfeder
- 18 Scheibe
- 19 Sicherungsring
- 20 Druckfeder
- 20a Federscheibe
- 20b zweite Druckfeder
- 21 Stößel
- 21a Stößelbund
- 22 Pedalhubsensor
- 23 Tellerfeder
- 24 Druckstangenkolben
- 25 Motoransteuerung
- 26 Shunt
- 27 Momentabstützung
- 28 Kugelgewindeantrieb
- 29 Balg
- 30 Einsatzstück
- 31 Lagerteil
- 31a Bund des Lagerteils
- 31b biegeelastischer Stößel
- 31c gelenkiger Stößel
- 32 Bohrung
- 33/33a 2/2 Magnetventil
- 34 Magnetjoch
- 35 Spule
- 36 Rückschluss
- 37 Magnetfluss
- 38 Lamellen
- 39 Hubmagnet
- 39a flexibler elektrischer Anschluss
- 40 Kupplungselement
- 41 Mitnehmerelement
- 42 Hülse
- 43 Führungsschiene
- 44 Hubmagnet mit Spule
- 45 Magnetanker
- 45a Lagerbolzen
- 46 Rückstellfeder
- 47 Lagerung
- 48 Feder